Korean Institute of Surface Engineering

pISSN : 1225-8024 | eISSN : 3399-8403


공학

한국표면공학회지 (35권3호 133-140)

Synthesis and Mechanical Properties of nc-TiN/a-Si$_3$N$_4$ Nanocomposite Coating Layer

나노복합체 nc-TiN/a-Si$_3$N$_4$ 코팅막의 합성 및 기계적 성질

김광호;윤석영;김수현;이건환;

부산대학교 재료공학부;한국기계연구원 표면기술연구부;

Abstract

The Ti-Si-N coating layers were synthesized on SKD 11 steel substrate by a DC reactive magnetron co-sputtering technique with separate Ti and Si targets. The high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses for the coating layers revealed that microstructure of Ti-Si-N layer was nanocomposite, consisting of nano-sized TiN crystallites surrounded by amorphous $Si_3$$N_4$ phase. The highest hardness value of about 39 GPa was obtained at the Si content of ~11at.%, where the microstructure had fine TiN crystallites (about 5nm in size) dispersed uniformly in amorphous matrix. As the Si content in Ti-Si-N films increased, the TiN crystallites became from aligned to randomly oriented microstructure, finer, and fully penetrated by amorphous phase. Free Si appeared in the layers due to the deficit of nitrogen source at higher Si content. Friction coefficient and wear rate of the Ti-Si-N coating layer significantly decreased with increase of relative humidity. The self-lubricating tribe-layers such as $SiO_2$ or (OH)$Si_2$ seemed to play an important role in the wear behavior of Ti-Si-N film against steel.

Keywords

Ti-Si-N;Nanocomposite;Hardness;Wear;