The etching reaction of $UO_2$ in $CF_4/O_2$ gas plasma is examined as functions of $CF_4/O_2$ ratio, plasma power, and substrate temperature at up to $370^{circ}C$ under the total pressure of 0.30 Torr. It is found that the highest etching rate is obtained at 20% $O_2$ mole fraction, regardless of r. f. power and substrate temperature. The existence of the optimum $CF_4/O_2$ ratio is confirmed by SEM, XPS and XRD analysis. The highest etching reaction rate at $370^{circ}C$ under 150W exceeds 1000 monolayers/min., which is equivalent to 0.4$mu extrm{m}$/min. The mass spectrometry analysis results reveal that the major reaction product is uranium hexa-fluoride $UF_6$. Based on the experimental findings, dominant overall reaction of uranium dioxide in $CF_4/O_2$ plasma is determined : $8UO_2+12CF_4+3O_2=8UF_6+12CO_{2-x}$ where $CO_{2-x}$ represents the undetermined mix of $CO_2$ and CO.