Effect of Thermally Grown TiO2 Interlayer on Chlorine Evolution Efficiency and Durability of Ti/RuO2-PdO-TiO2 Electrodes
열산화법으로 생성된 TiO2 중간보호층이 Ti/RuO2-PdO-TiO2전극의 염소발생 효율 및 내구성에 미치는 영향
박다정;최승목;이규환;
Park, Da Jung;Choi, Sung Mook;Lee, Kyu Hwan;
한국기계연구원 부설 재료연구소 표면기술연구본부;
Surface Technology Division, Korea Institute of Materials Science (KIMS);
DOI : 10.5695/JKISE.2018.51.4.207
Not only efficiency of chlorine evolution reaction (CER) but also durability namely service life is very important property in dimensional stable anode for Ballast Water Management System (BWMS) for marine ships. Many researchers have been focused on improving efficiency of CER by controlling composition, phase and surface area for a long time, but the efforts to increase durability was relatively small. In this study, we have investigated the effect of $TiO_2$ protective interlayers on efficiency and durability of DSA electrodes. $TiO_2$ protective interlayers were prepared by thermal oxidation at 500, 600 and $700^{circ}C$ on Ti substrate. And then the DSA electrodes consisting of $Ti/RuO_2-PdO-TiO_2$ were prepared by thermal decomposition method on $TiO_2$ interlayers. The efficiencies of CER of DSA electrodes without $TiO_2$ interlayer and with $TiO_2$ interlayer grown at 500, 600 and $700^{circ}C$ were 94.19, 94.45, 84.60 and 76.75% respectively. On the otherhand, durabilities were 30, 55, 90 and 65 hours respectively. In terms of industrial aspect, the performance of DSA is considered high efficiency and durability which can correspond to total production of chlorine. If we considered the performance index of DSA as the product of efficiency and durability, performance indices could be recalculated as 28.26, 50.85, 76.14 and 49.89 respectively. As the thermal oxidation temperature increasing, life time were increased remarkerbly, while efficiency of CER was decreased slightly. As a result, DSA electrode with $TiO_2$ interlayer grown at $600^{circ}C$ has shown about 2.7 times performace of original DSA electrode without $TiO_2$ interlayer.