Korean Institute of Surface Engineering

pISSN : 1225-8024 | eISSN : 3399-8403


공학

한국표면공학회지 (46권4호 175-180)

Effect of the Ni Catalyst Size and Shape on the Variation of the Geometries for the As-grown Carbon Coils


Jang, Chang-Young;Kim, Sung-Hoon;


Department of Engineering in Energy & Applied Chemistry, Silla University;

DOI : 10.5695/JKISE.2013.46.4.175

Abstract

Carbon nanofilaments (CNFs) could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Ni powders were used as the catalyst for the formation of the CNFs. During the initial deposition stage, the initiation of the CNFs on the Ni catalyst was investigated. The geometries of the as-grown CNFs on Ni catalyst were strongly dependent on the size and/or the shape of Ni catalyst. Small size catalyst (<150 nm in diameter) gives rise to the unidirectional growth of the CNFs. On the other hand, large size catalyst (150~500 nm), the bidirectional growth of the CNFs could be observed. Particularly, the well faceted parallelogram-shaped Ni catalyst could give rise to the bidirectional growth of the CNFs having the symmetrically opposite direction. Eventually, these bidirectional growths of CNFs were understood to form the well-developed carbon microcoils (CMCs). Based on these results, the optimal shape and the size of the Ni catalyst to form the CMCs were discussed.

Keywords

Ni Catalyst size;Ni Catalyst shape;Geometry variation;Carbon coils;Thermal chemical vapor deposition;