Korean Institute of Surface Engineering

pISSN : 1225-8024 | eISSN : 3399-8403


공학

한국표면공학회지 (46권2호 68-74)

Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate

초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과

나봉권;강찬형;
Na, Bong-Kwon;Kang, Chan Hyoung;

한국산업기술대학교 신소재공학과;
Department of Advanced Materials Engineering, Korea Polytechnic University;

DOI : 10.5695/JKISE.2013.46.2.068

Abstract

For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{mu}m$ with a fixed $2{mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.

Keywords

Nanocrystalline diamond;Microwave plasma CVD;Coefficient of friction;Adhesion;